Typewriter Repairmen 2012 NURC team
Technical report
The robot Biff is a product of the Typewriter Repairmen. This year’s team consists of:

Jim Forbes, Chief Instigator

David Forbes, Soldering iron wielder

Kevin Forbes, Coder

Gary Forbes, Chief strategist

Steven Forbes, CAD guru

Abstract

Autonomous

The Typewriter Repairmen are not new to the world of underwater robots. Over the past few years we have built several manually controlled ROVs capable of performing many underwater tasks and competing in the NURC. In July of 2011, a few members of the Typewriter Repairmen went to the AUVSI Robosub competition as spectators and to cheer on the local Falcon Robotics team with their newly constructed AUV. There we got to see a completely new level of submersible competition and witnessed the challenges that come with trying to make a robot swim without operator assistance. With a level of difficulty an order of magnitude larger than what we had dealt with in the past, we knew it wouldn’t be easy… but we knew that our next robot would have to think for itself! We have chosen to participate in the new autonomous division of NURC this year and have constructed our AUV, “Biff”, to meet this challenge.

Mission Analysis

Since this is our first time doing an autonomous robot, we are opting to make the simplest possible that will be able to score points for navigation and identification of objects.
Overall plan

Our plan is to make verstatile, small robot that can navigate on it’s own. We want to build it with enough capability that it can complete the RoboSub mission, while limiting cost and size so that it’s fun and affordable to build and work with. We also want the robot to be useable for several years, because we expect that the learning curve for autonomous operation is steep, and it will take us a while to figure out how to do it.

Mission strategy

At this time, our mission strategy is limited to navigating as much of the course as we can.

Robot hardware

The robot, “Biff”, is a small unit similar in design to Babs, our 2010 NURC robot. We have chosen to reduce the motor count to simplify the control electronics and because raw speed is not as important in the autonomous competition. The main difference is that Biff has on board batteries and a computer, which requires more internal space, so we added a second sealed electronics enclosure. The batteries and speed controller are in the rear compartment, while the computer and sensors are in the front compartment.
Mechanical

Most of the mechanical design features of Biff are very similar to Babs. The frame is made of thin steel strap, and the thrusters use bilge pump motors, with their housings removed, driving fabricated brass propellers. The electronics enclosures are made of polycarbonate tubing with aluminum end plugs and caps, sealed with O rings. The wiring is sealed to the caps using O rings. Ballast is added using thick steel bars as needed to obtain slight positive buoyancy.
There are a few differences between the mechanical design of Biff compared to our past ROVs. The ROVs in past years have not needed easy access to the electronics, but this year’s AUV requires battery changes, and there is an on board computer to deal with. To make Biff easy to work on, we decided to use a cap design for sealing the tube, which requires axial force to hold the compartment closed.

To reduce motor count, yet provide adequate thrust and all required degrees of control, we changed the orientation of the lateral and vertical thrusters. Rather than have two vertical thrusters and one lateral, we have combined the functions and have two angled thrusters, in a “vectored” configuration.
Construction Techniques

We have developed some techniques to build ROVs over the past few years. The methods and materials are somewhat unconventional, but they work for us. One of us has a bit of a machine shop at home, with cutting, welding, turning, and milling equipment.
[image: image1.jpg]

Figure 1. Robot Frame and Electronics Enclosures

Electronics

The creation of an autonomous underwater robot involves the use of sophisticated vision system, so a high level of computing power is required. We have selected to use a small Intel Atom computer running a Linux operating system to perform the image analysis and high-level mission control. The lower-level control is handled by an Arduino microcontroller and a 4-channel motor controller board that we originally built for notBob, our 2009 NURC robot.

Subsystems:

Motor controller

The motor controller is the ESC4A board that we designed for notBob, our 2009 NURC robot. This board is designed to drive up to four 12V motors from a 48V supply voltage.

Since the autonomous mission may be run at lower speed than the ROV mission requires, we decided to downgrade the performance of the robot by powering the board from 24V instead of 48V. This has the effect of limiting the motors to half speed. It also reduces the weight of the onboard battery pack.

Batteries

Since the robot is untethered, our previous approach of placing the batteries on shore is not going to work. One of our team members had a dozen 11.1V 5AH lithium-polymer battery packs on hand from a previous summer project, so these have been pressed into service. Two of these packs are wired in series.

PC

The task of capturing images form the onboard cameras and analyzing them to find features in the underwater environment requires a good bit of processing power. We hope that an Atom processor is sufficient. We’ll find out.
The PC we chose is called the FitPC2i, which is essentially a netbook computer without the built-in user interface. It has WiFi, Ethernet, USB and a hard disk drive. The processor is a 1.6 GHz unit with 1 GB of RAM.
We have installed the Linux Mint OS on it. The Python language is used for controlling the robot. The software is discussed in detail below.

Arduino

The PC does not connect directly to the robot’s control and telemetry hardware. This task is performed by an Arduino microcontroller board, specifically the Arduino Pro Mini 16 MHz. The Arduino has a USB interface to allow the PC to send and receive messages. It also has a carrier board that provides four digital I/O lines and four analog inputs on standard R/C hobby 3-pin headers.

One digital output sends pulse-position modulated speed commands to the motor controller board. A digital input monitors the autonomous mission control switch. Two analog inputs monitor depth via a pressure sensor device and battery voltage through a 10:1 divider.

The code for the Arduino sends and receives simple human-readable commands and telemetry data in a manner nearly identical to that used by our Rovotron system of 2010.
Cameras

The robot needs to be able to see both the scenery that it is approaching and the markers placed on the bottom of the pool. This is achieved by mounting two USB video cameras (Logitech C310) in the front cylinder, one facing straight forward and the other facing straight down. Each camera was removed from its original housing to simplify mounting.

[image: image2.jpg]

Figure 2 Front Compartment with Cameras and Arduino

Sensors

The robot senses its depth and its compass heading. The depth sensor is a Motorola pressure sensor of type MPXA4250A. It emits a voltage proportional to absolute pressure, about 20mV per kPA of pressure. This results in a zero-depth voltage of 1.4V.
We obtained a Honeywell HMC6352 2-axis compass chip from Sparkfun and installed it in the robot's forward waterproof compartment. We observed that the compass did not indicate direction reliably. Another compass was connected via a cable and manipulated around the robot. It was seen to work reliably when placed about 15cm away from the robot frame.

A manual compass was moved near the robot. Its needle was seen to deflect dramatically when brought near the steel frame. This showed us that we would have no joy unless we mounted the compass chip remotely. We fabricated a PVC waterproof pod and connected it to a length of direct-burial Ethernet cable using an evaporative cooler supply fitting. The compass is now mounted to an aluminum strut that projects straight up 15cm from the center of the robot's top surface.

The compass was tested in a swimming pool, and found to be in error by approximately 20-30 degrees when the robot was submerged to a depth of 2m. It is suspected that the steel reinforcing bars in the concrete pool lining are to blame for this effect. Therefore, we may need to take headings at a shallow depth for greatest accuracy. Further testing will clear up this question.

[image: image3.jpg]

Figure 2 Biff with tether attached

Tether

Development of an autonomous underwater vehicle requires the ability to control and observe the behavior of the machine under operator control. To do this, a tether is required. We decided to use the built-in WiFi network capability of the FitPC computer for the tether.

The computer has an antenna mounted to a connector on its back. We considered removing the antenna and replacing it with a wired connection to the control computer, but that would require the use of a big, expensive connector that may develop leaks. So we thought about it some more.

Finally, the idea came to use a length of low-cost RG-58 coaxial cable as the tether cable, and provide an antenna on each end of this cable. The antenna, in fact, could be made by simply removing the shield from the cable for 1/4 of the wavelength of the 2.4 GHz WiFi RF signal. The end of the cable that is attached to the robot has been sealed with adhesive heat-shrink tubing to keep water out. It is attached to the robot with tape. The other end of the cable is not sealed, but is held to the wireless router with tape.

The tether arrangement appears to work satisfactorily. In one test run, a poor connection was observed when the robot dived. The orientation of the tether antenna was found to be perpendicular to the FitPC antenna. The tether antenna was reoriented, and reliable communication was restored.
Driver console

The robot is not operated by a human while running the mission, but it needs to be taught what the mission entails by a human. This is done via a driver console operating on a laptop computer. The robot direction and speed are controlled by a USB gamepad controller. The laptop computer displays the images captured by the two cameras on its screen.

Software

The most important difference between this mission and the previous ones done by our team is in the software. We have had to create a large amount of software to allow the robot to know where it is, where it’s headed, and when it has gotten where it wanted to go.

Hardware interface

The hardware interface code is written in the C language and executes on the Arduino. It has a simple loop that receives a command from the PC, sends pulsed speed commands to the motor controller, reads the telemetry data and returns that to the PC.

Navigation

The robot uses information from the compass, depth sensor, and vision system to control its movement. Feedback from the compass and pressure sensor is used to maintain a constant heading and depth, respectively. The vision system allows the robot to align itself with field markers and mission objects. Using the vision markers as a reference reduces the accumulation of error.
Mission coordination

The mission plan is saved on the robot as a text file, written in a custom interpreted language. A mission parser opens this file and runs the mission accordingly. The parser communicates with the interface and vision systems to acquire sensor information and control the robot’s motors. Using a separate mission file with a parser makes the mission planning a high level, versatile process.

References

Servo Magazine, February 2009, “The Typewriter Repairmen 2009 NURC ROV: notBob” David Forbes et. al.
